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Starting from the energy-momentum vector rclationship for two observers, a 
multivector wave equation, which we call the full Dirac equation, is derived. It is 
shown to correspond to a series of symmetry_ constrained Dirac Fields with basic, 
repetitive, SU(5) structure. The consequences of the symmetry, restrictions for the 
definition of charge, hypercharge, color, charm, etc. are discussed together with a 
description of the associated gauge fields. 

1. I N T R O D U C T I O N  

An entirely new procedure of deriving the Dirac wave equation is 
presented here. It allows the generalization of the s p i n - l / 2  field equations 
in a way more suitable to understand the physical meaning of the different 
terms in the (multivector) wave function and the behavior under the basic 
symmetries of  space-time. In a previous work we developed this equation in 
matrix form (Keller, 1981). 

The new wave equation, which we will call the full Dirac equation, can 
be studied, in particular, under  the operat ion of duality rotation. Duali ty 
rotations mix space-time vectors with space-time three-vectors as they are 
dual to each other. The duality rotation D~ can be performed on each of the 
four space-time vectors independently;  the wave function can be single 
valued, multivalued, or invariant upon each of the D~. This will be on the 
origin of  symmetry  restrictions to the possible solutions to the full Dirac 
equation. Because the gauged Dirac equation, with the electromagnetic field 
as a gauge field, requires the duality rotation to be global (on all four 
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space-time vectors simultaneously) only those symmetry constrained Dirac 
fields which have the same valuedness upon all four Dff can interact with the 
electromagnetic field according to standard electrodynamics. 

The elementary matter fields described by the full Dirac equations are 
given the generic name "symmetry con strained Dirac fields," or diracons for 
short. 

In Section 2 the full Dirac (fD) equation is derived from the energy- 
momentum space-time vector. In Section 3 the duality rotation symmetries 
of the fD equation are studied and the resulting diracons are classified. The 
basic collection of gauge fields and their implications are presented. Section 
4 gives some comment on the implications of this work in the analysis of 
quantum mechanics. 

2. T H E  FULL DIRAC EQUATION 

Consider the tangent space ~'~(x) at point x of space-time consisting of 
the vectors {y~,; ff = 0, 1,2,3}. These orthonormal vectors 

` /d : l ,  (l) 

have their metric given by the symmetric product (. product) 

= `/,,- + ) (2 )  

and can be used to define multivectors from their antisymmetric product (A 
product) 

/̀~ . . . .  x ~`/~ A`/,, A . - .  A`/x (3) 

defined by recursion, if b is an n-vector and a is a 1-vector 

aAb=--  �89 = a / ~ o 1 i a 2 / ~  ' ' '  i o  n (4) 

Following Hestenes (1966) we define their total or geometrical product 

ab = a . b  + a A b (5) 

The observer 51 at x has at his disposal the 16 different basic multivec- 
tors or d numbers (d  = Dirac), including the scalar 1 and the pseudoscalar 
"/5 = `/0`/IY2Y3, which constitute the Clifford algebra at @(x). 

A Lorentz transformation 

@(x)  -~ @' (x )  = R ( x ) @ ( x ) R - ' ( x )  (6) 
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with R being the sum of a scalar, a bivector, and a pseudoscalar such that 

R R - I  = R-IR = 1 (7) 

and 

R-'=  -+k (8) 

(/~ is a d number in which the order of all products has been reversed) can 
be written in terms of generators 

R = + e -B/2 (9) 

the B being bivectors required to satisfy (8). The vectors associated with a 
second observer S 2 

a. = RTuR -1 (10) 

will again be orthogonal but not necessarily constant. 
Consider now the energy momentum vector relation p =  p' for a 

"particle" moving with respect to observer $1 

pOu + plTl + p2.y2 + p3.y3= p'Oy~ + p'tT~ + p'2.y~ + p'3y~ (11) 

the primed components are those computed by ~ when the particle's 
movement is referred to a g'~ inertial system. 

Here 

and 

then 

v~ (13) 

pa.~o = p'~ 

on multiplying by R on the fight 

p T o R -  p RTo 

the explicit dependence on •] has disappeared, such that 

(p%s). 

(14) 

(15) 

(16) 
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using the transpose to equation (15) 

 p~ = p'~ (17) 

to obtain the standard scalar invariant 

p ~ p ~ g ~ =  p,Bp,~g~ (18) 

We may then make  a further Lorentz  transformation with the even multi-  
vector 

Q = exp[-- l (p-  x +  ysp ' -x ' ) /h] ,  12 = -- 1 (19) 

with the particular (rotation plane) choice 

l , =  Ysyoy,, i = 1 , 2 , 3  (20) 

defining 

R Q = q ,  and f = Q / ~  (21) 

to obtain the eigenvalue equation 

(22) 

The Q contain eight phase factors in total to change R ~ q,. This is the 
full Dirac equation in multivector form. 

The YD', = 3'~ are the dual of the y~, and linearly independent. ~ is now 
an even d number depending on {x ~'} and (x'"} and (22) may be properly 
called a quantum-mechanical-like particle's wave equation. The particular 
choice of o 3 = Y3Y0 in the phase factor reflects the fact that two currents can 
be defined which will be considered, 

4, = fYo4' and J3 = ~Y3+ (23) 

The Ys is needed to have both the bivector o 3 and its dual to keep the 
two forms in the exponent of (18) linearly independent phase factors of +. 
The g . .  appear in (21) in order to have the correct signs for the p~' and p'" 
because time- and spacelike terms in p-x and p'. x' have opposite signs. 

The choice of I =  13 =Yso3 = 3'tY2 is arbitrary and I =  12 = y502 or 
I = I~ = ysol could as well be considered. The wave equation (18) is then 
SU(2) symmetric and, because I = - L it is also u(1) symmetric. Then it is 
S U(2) • U(1) symmetric as basic gauge transformations symmetries. 
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With 

p': m07 g (24) 

then (22) reduces to 

7~g, ,~ , , r  -- m0+70 (25) 

This equation has been discussed in length by Hestenes (1966) which 
derived it in a different way (Hestenes, 1975). It has the same form as the 
one derived by G0rsey (1958), with ~b being a four-spinor, in his study of the 
nucleons. 

The use of the I l, 12 , and 13 as a base for the S U ( 2 ) •  and the 
relation with the electroweak interaction has been discussed by Hestenes 
(1982). 

3. DUALITY ROTATION SYMMETRIES OF THE FULL 
DIRAC EQUATION 

The gauge transformations admit other symmetries which leave (19) 
invariant, a duality transformation 

7~,~ 7~ = cos 0~7~ + sin 0~7~ 

(26) 

or in multivector notation 

" = v e v;o,, (27) "y, "y~ = eV,O",/2yue - v ' ~  = eV,O"'V, , ,_ 

The second and third equalities hold because 75 anticommutes with all 
7~, and y~. Then the duality rotation factors can be incorporated directly in 
the +. The dependence on duality rotations should be considered for the 
wave function and the quantities, like the field's stress-energy tensor, 
constructed from it. They should be duality rotation invariant. Elementary 
particles interacting with electromagnetic fields should have some special 
symmetry on duality transformations (26) as the electromagnetic field 
stress-energy tensor is known to be duality invariant, even if the field 
amplitudes do transform. For this reason, charged particles should be 
described by a wave function single or double valued with respect to the 
four duality rotations 0 ~' going from 0 to 2~'. 
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There are three spacel ike gauge duality rotations, equivalent among  
themselves  t i = 2a, ,  and one t imel ike t o = 2b. The first few combinat ions  of 
s ingle-valued t = 0, 2 . . . .  and double-valued t = 1,3 . . . . .  symmetr ies  for ~b are 
given in Tab le  I. 

The reason for 
t r an s fo rma t ions  

to obtain 

this can be made  more explicit by doing the polar 

with 

, 2 (O")2=(X")2+(X"), 0 " > 0  (28a) 

O" = - a r c t a n ( x ' " / X "  ) (28b)  

= �89  and  . , / - _ 1  _ 

(3o1 

' t  'f" = e r",'e"~b (31) 

which is of the same form as from the considerat ions  fo l lowing (28). 
What can be the relations between the a,, the b, and the particles of the 

different matter fields'?, a~, a 2, a 3 suggest the three "colors" and b suggest 

TABLE I. Simplest Combinations of Quantum Numbers t/2 
Corresponding to Duality Rotation of the Wave 

Function ~b of a Svmmet~ Constrained Dirac 
particle (Diracon) 

Possible identification of the 
a~ a ~ a 3 b Ea corresponding matter field 

0 0 0 
I / 2  0 0 
0 • I /2  0 
0 0 2 1/2 

= 1!2 -+ I / 2  0 
0 + I / 2  - I / 2  

= I / 2  0 +- I / 2  
•  •  ~ 1 / 2  

• I /2  • I /2  • I /2  
• 1 • 1/2 • 1/2 
•  • •  
• 1/2 • 1/2 • 1 
• • + 1 / 2  
• + 1 / 2  • 
•  -4-1 • 
• • • 

/ 2  0 Neutrino 
/ 2  -+ 1/2 Lepton ( h -  0) three types, 
/ 2  +- I / 2  probable components of me.,,on.,, 
/ 2  • I//2 and barions 
/ 2  +-2/2 Lepton(h  = 0) three types, 
/ 2  -+2/2 probable component of mesons 

1/2 -+2/2 and barions 
1/2 + 3 / 2  Electron 

1 + 3 / 2  Neutr ino(b = 1) 
1 + 2 Lepton (b = 1) three types, 
1 • 2 probable component of heavy measons 
1 m 2 and barions 
1 •  1/2 Lepton(b  = l) three types, 
1 • 2 1/2 probable component of heavy 
1 • 2 1/2 mesons and barions 
1 •  Muon 



Wave Equation 835 

charm in the form: b - - 1 / 2 ,  first family of leptons and building block of 
barions, b = 1 to be the second family or the charmed family, and b = n in 
general the nth family of particles. I suggest the different fields, which will 
be Dirac fields constrained by symmetry should take the generic name of 
diracons as they all obey (a generalized, multivector) Dirac equation. 

The dynamics of the matter fields are: 

1. symmetric in a I, a 2, a 3, and b 
2. a~ and a 2 and a 3 invariant 
3. a i and aj invariant, i v s j 
4. a, invariant 
5. symmetric in a~,  a 2, a 3 but not on b 
6.  a ,  changing into a different value or into a aj. 

Field l may correspond to the normal electromagnetic interaction. Fields 2, 
3, 4, and 5 correspond to symmetry restricted electromagnetic interactions 
of diracon fields (not to fractional charges as in the quark theory), 5 to the 
weak interaction with A a = - + 1 / 2 ,  whereas 6 is just the gluon type of 
interaction changing one color particle into another. 

The theory of diracons is more general than SU(5) and contains the 
SU(3) and SU(2)•  U(1) theories of elementary particles. 

From the corresponding gauge transformations the properties of the 
different force mediating boson fields are easily derived. The conditions to 
observe diracons with electromagnetic interactions are also derived in this 
way. 

The possibility of a diracon's interacting with the electromagnetic and 
other gauge field appears as a symmetry condition. If the duality rotations 
phase factors can be factorized, the field particles will interact electromag- 
netically; if the duality rotations phase factor cannot be factorized then the 
field's particles cannot obey standard electrodynamics. In the case of a 
composite particle the total wave function will be a product of the con- 
stituent field ~b, their product may have the required combination of duality 
rotation phase factors, and the composite particle obey standard elec- 
trodynamics. Symmetry constrained electrodynamics is not to be ruled out 
for other diracon fields or combination of fields. 

The opposite procedure can be considered, the symmetries of the 
interaction carrying fields being fixed and, as a consequence, the symmetries 
of the diracon fields (in particular under duality rotations) be obtained. 

4. QUANTUM MECHANICS 

The multivector equation (25) has been shown by Hestenes to corre- 
spond to the standard Dirac equation, once a matrix representation of the 
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vectors y~, is selected and a Dirac four-spinor 'Is = +u is defined. The matrix 
u is a column matrix with only the first element being different from zero. 

The procedure described in equations (12)-(22) and the analysis pre- 
ceding equation (31) gives a straightforward interpretation of the wave 
function (31). It is first clear that the Dirac theory is a way of relating the 
energy-momentum vector from two different reference frames using the 
basic set "y, of only one Observer. The wave function contains the informa- 
tion of the second (particle at rest or proper) frame and of the action 
associated with the particle. Knowing this, the relations between the ob- 
server's frame and the particle's rest frame can be accounted for and the 
action phase factor found. 

More interesting is the case of the gauged Dirac equation to account 
for interation carrying fields. In this case the energy-momentum vector 
depends on time and position, the particle timelike vector 

1 
a ~ - - -  (32) 

1 - -  D 3 

and the square of the wave function gets a time dilatation factor which 
increases in the regions where the particle increases its velocity (attractive 
potential). A new type of question may now be asked: What is the relative 
probability of finding a particle at two places (x~,t~) and (x2, t2)? The 
ratios of the absolute values of the timelike vectors (usually called P) 
obtained from (10) contain this, probabilistic, information which is the 
origin of the probabilistic interpretation of quantum mechanics. 
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